Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity

نویسندگان

  • Anthony Nguy-Robertson
  • Anatoly Gitelson
  • Yi Peng
  • Andrés Viña
  • Donald Rundquist
چکیده

Published in Agron. J. 104:1336–1347 (2012) Posted online 29 June 2012 doi:10.2134/agronj2012.0065 Copyright © 2012 by the American Society of Agronomy, 5585 Guilford Road, Madison, WI 53711. All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. T leaf area index (LAI), the ratio of leaf area to ground area, typically reported as square meters per square meter, is a commonly used biophysical characteristic of vegetation (Watson, 1947). The LAI can be subdivided into photosynthetically active and photosynthetically inactive components. The former, the gLAI, is a metric commonly used in climate (e.g., Buermann et al., 2001), ecological (e.g., Bulcock and Jewitt, 2010), and crop yield (e.g., Fang et al., 2011) models. Because of its wide use and applicability to modeling, there is a need for a nondestructive remote estimation of gLAI across large geographic areas. Various techniques based on remotely sensed data have been utilized for assessing gLAI (see reviews by Pinter et al., 2003; Hatfield et al., 2004, 2008; Doraiswamy et al., 2003; le Maire et al., 2008, and references therein). Vegetation indices, particularly the NDVI (Rouse et al., 1974) and SR (Jordan, 1969), are the most widely used. The NDVI, however, is prone to saturation at moderate to high gLAI values (Kanemasu, 1974; Curran and Steven, 1983; Asrar et al., 1984; Huete et al., 2002; Gitelson, 2004; Wu et al., 2007; González-Sanpedro et al., 2008) and requires reparameterization for different crops and species. The saturation of NDVI has been attributed to insensitivity of reflectance in the red region at moderate to high gLAI values due to the high absorption coefficient of chlorophyll. For gLAI below 3 m2/m2, total absorption by a canopy in the red range reaches 90 to 95%, and further increases in gLAI do not bring additional changes in absorption and reflectance (Hatfield et al., 2008; Gitelson, 2011). Another reason for the decrease in the sensitivity of NDVI to moderate to high gLAI values is the mathematical formulation of that index. At moderate to high gLAI, the NDVI is dominated by nearinfrared (NIR) reflectance. Because scattering by the cellular or leaf structure causes the NIR reflectance to be high and the absorption by chlorophyll causes the red reflectance to be low, NIR reflectance is considerably greater than red reflectance: e.g., for gLAI >3 m2/m2, NIR reflectance is >40% while red reflectance is <5%. Thus, NDVI becomes insensitive to changes in both red and NIR reflectance. Other commonly used VIs include the Enhanced Vegetation Index, EVI (Liu and Huete, 1995; Huete et al., 1997, 2002), its ABStrAct

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote estimation of crop fractional vegetation cover: the use of noise equivalent as an indicator of performance of vegetation indices

Many algorithms have been developed for the remote estimation of vegetation fraction in terms of combinations of spectral bands, derivatives of reflectance spectra, neural networks, inversion of radiative transfer models, and several multi-spectral statistical approaches. The most widespread type of algorithm used is the mathematical combination of visible and near-infrared reflectance, in the ...

متن کامل

Informative spectral bands for remote green LAI estimation in C3 and C4 crops

Green leaf area index (LAI) provides insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast and nondestructive estimation of green LAI. A number of methods have been used for the estimation of green LAI; however, the specific spectral bands employed varied widely among the methods and data used. Our objectives were (...

متن کامل

Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops

Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosyn...

متن کامل

Remote Estimation of Crop Biophysical Parameters: A Novel Three Channel Band Ratio Approach

Green Leaf Area Index (GLAI) and Green Biomass (GBM) are two of the fundamental biophysical properties indicating vegetation physiological status. In the current research a new three channel normalized band ratio algorithm i.e. "Weighted Normalized Crop Index (WNCI)" is proposed for remote estimation of vegetation GLAI and GBM. WNCI takes into account three of the most common vegetation sensiti...

متن کامل

Agricultural and Forest Meteorology

Crop gross primary productivity (GPP) is an important characteristic for evaluating crop nitrogen content and yield, as well as the carbon exchange. Based on the close relationship observed between GPP and total chlorophyll content in crops, we applied a model that relies on a product of chlorophyll-related vegetation index and incoming photosynthetically active radiation for remote estimation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012